
Homelink Project Testing Report
Levon Brunson, Timothy Frank, Latifah Aljafar, Reagan Hunt

The Project Testing Report should (as a group) include a short summary of your testing
plan and methodology (how you have tested various parts of your application, what
software you are using for testing).

Testing was a very important part of our development process. While building various
components and views we divided the work so that we could work independently and
asynchronously, which meant that we had to be careful in making sure everything fit together
when consolidating code.

This meant each of us would perform manual functional tests -- which for example in the
navigation bar meant clicking each link, trying to navigate from every page to every other page,
resizing, etc. -- basically ensuring that everything functioned as intended before pushing to the
repository. We felt that automated functional testing wasn’t necessary at the onset of the project
since there weren’t enough moving parts as of yet to warrant it. However, as of submitting this
we are integrating the Cypress e2e testing framework into the project within the next few days
before submitting our project in order to confirm there are no small lingering issues.

We would also perform manual integration tests, so whenever there were several large
components coming together we would spend one of our check-in meetings going through the
functionality of the website, noting any bugs or unexpected issues, and then adding them to our
Asana board to keep track of them. Through this integration testing we picked up on a pretty
important issue where new users that signed up would be unable to log in because of a
mismatch in how their user IDs were being set in the Firestore.

The final component of our testing process was running vigorous unit tests, using Vue’s built-in
test utils. Under normal circumstances we would have incorporated these into the codebase
from the get go, but given the shortened semester and front-loaded deadlines we had to move
quickly to get our prototype ready in time. However, after that we found we had more breathing
room and are combing our code top-to-bottom, adding unit tests for all of our non-trivial
components.

It should also have an overview of what was discovered through testing.

There were plenty of small bugs that aren’t worth mentioning, but in terms of larger issues: an
issue with the signup modal where the user would be created but the page wouldn’t redirect or
update; a login issue where the user could log in but would be logged out immediately because
the session wasn’t being stored correctly; another login issue where new users wouldn’t be able
to log in because their UUIDs were being set and gotten in two different ways (an integration
issue, as mentioned above); a router issue where certain routes could be accessed even when
logged out; a payment issue where the stripe API is out of sync with our firebase project. The

API was fetching a one rent for all our tenants. It was fixed by associating the product firebase
collection with the API checkout session.

Additionally, you should outline INDIVIDUALLY (but in the same document):
● What you personally did in terms of testing
● What tests were run
● What the tests showed
● What you did to fix any bugs or issues

Levon

I wrote and performed tests for the landing page, the sidebar, the unit page, and in tandem with
Reagan worked on the dashboard. There were unit tests for these components, and they helped
reveal some of the bugs listed above -- there weren’t that many which were revealed by the unit
tests though, these were more sanity checks than anything just because the project scope was
so small it was easy to remain relatively bug-free because there were very few complex
interactions. To fix the bugs I did a lot of console logging in order to pin down where something
was going wrong.

Latifah

● What you personally did in terms of testing
Unit Testing in the payment was limited, since we need an actual card to complete the
scenario. Most bugs I faced were during development.

● What tests were run
Unit testing on payment, payment details, tenant profile,tenant roommates, and tenant
settings.

● What the tests showed
Our test units were very simple , they did not show any bugs. Most bugs were found
during the development phase.

● What you did to fix any bugs or issues
My work was mostly on the tenant side, I worked on five components: payment, payment
details, tenant profile,tenant roommates, and tenant settings. At the beginning of the
project, I did not know how to fetch the firebase collections. And due to this reason, I
faced a lot of bugs. The one thing that helped me overcome this challenge was using the
console.log. Moreover, The ESlint was recommending that I should use arrow functions
to create the vue methods. This recommendation messed up my implementation. I could
not refer to the global vue using the keyword ‘This’ . The last bug I dealt with was the
stripe API integration. I created the checkout vue component,but it was not linked to our

firebase collections. The easiest way to solve this issue is to create the product on the
client-side script, and then link it to our collection.
However, this solution is not secure. The client can easily create the product and alter
the price. so I needed a server-side solution. After a lot of searching, I found out that I
can use firebase functions to invoke stripe API functions.

Reagan

I worked mainly on the landlord and tenant dashboards (home pages). This required me to
become familiar with Vue, then create alert, todo and request components. To test these, I
displayed sample data written in the Vue files. At this point, I had a lot of UI problems to tackle,
from alert/request/todo items overflowing their containers to malfunctioning modals to missing
icons.

My next task was creating mock data in the firebase real-time database, then attaching this to
my frontend. Once the connection was established, I ran a long series of tests (actions) to make
sure my delete functions were correctly deleting data from the database. At this point, while
items added to the database were immediately rendered, and the delete function successfully
deleted items from the database, the delete function was not visually removing items from the
screen. I had to reorganize the content of my files to listen in real time for delete changes in the
database and use those events to trigger frontend (delete content) actions. Once this was all
straightened out, it was clear my components were successfully rendering data from the
database.

I ran WAVE accessibility checker on my UI and tested the appearance in multiple browsers. I
also added functionality to handle resizing of the browser, including reorganizing the page and
omitting elements that were not absolutely necessary.

Timmy

I worked mostly on getting firebase integrated with the landlord units view and the landlord
individual units view. I also integrated firebase for the authentication and registration of users. Of
course there were a number of small issues that came up along the way, but the scope of this
project was small enough such that it did not require significant testing. However, the tests I ran
personally were testing logging in with both types of users (landlords and tenants) and making
sure that different pages were rendering correctly. One issue that I identified was that if you
went to the path for a landlord’s specific unit while logged in as a tenant, you would be able to
see that data. Of course there would not be a way to navigate through to that page through the
normal course of the website, but if you had the link it would be accessible. To fix this, we used
Vuex and local storage to guard access of components that should only be accessed by certain

types of users. I also tested different behavior of adding tenants to units and making sure that
the page would update appropriately. At first there was an issue where you had to refresh the
page before seeing the new tenant that was added to a unit, but then I fixed that by adding a
componentKey to the div and using that to refresh it at a specific time.

